36 research outputs found

    Identification of DNA-Methylated CpG Islands Associated With Gene Silencing in the Adult Body Tissues of the Ogye Chicken Using RNA-Seq and Reduced Representation Bisulfite Sequencing

    Get PDF
    DNA methylation is an epigenetic mark that plays an essential role in regulating gene expression. CpG islands are DNA methylations regions in promoters known to regulate gene expression through transcriptional silencing of the corresponding gene. DNA methylation at CpG islands is crucial for gene expression and tissue-specific processes. At the current time, a limited number of studies have reported on gene expression associated with DNA methylation in diverse adult tissues at the genome-wide level. Expression levels are rarely affected by DNA methylation in normal adult tissues; however, statistical differences in gene expression level correlated with DNA methylation have recently been revealed. In this study, we examined 20 pairs of DNA methylomes and transcriptomes from RNA-seq and reduced representation bisulfite sequencing (RRBS) data using adult Ogye chicken tissues. A total of 3,133 CpG islands were identified from 20 tissue data in a single chicken sample which could affect downstream genes. Analyzing these CpG island and gene pairs, 121 significant units were statistically correlated. Among them, six genes (CLDN3, DECR2, EVA1B, NME4, NTSR1, and XPNPEP2) were highly significantly changed by altered DNA methylation. Finally, our data demonstrated how DNA methylation correlated to gene expression in normal adult tissues. Our source codes can be found at https://github.com/wjlim/correlation-between-rna-seq-and-RRBS

    Bioinformatics services for analyzing massive genomic datasets

    Get PDF
    The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating down-stream analysis of genome data. Bio-Express web service is freely available at https://www. bioexpress.re.kr/. ?? 2020, Korea Genome Organization

    Grouped False-Discovery Rate for Removing the Gene-set-Level Bias of RNA-seq

    Get PDF
    In recent years, RNA-seq has become a very competitive alternative to microarrays. In RNA-seq experiments, the expected read count for a gene is proportional to its expression level multiplied by its transcript length. Even when two genes are expressed at the same level, differences in length will yield differing numbers of total reads. The characteristics of these RNA-seq experiments create a gene-level bias such that the proportion of significantly differentially expressed genes increases with the transcript length, whereas such bias is not present in microarray data. Gene-set analysis seeks to identify the gene sets that are enriched in the list of the identified significant genes. In the gene-set analysis of RNA-seq, the gene-level bias subsequently yields the gene-set-level bias that a gene set with genes of long length will be more likely to show up as enriched than will a gene set with genes of shorter length. Because gene expression is not related to its transcript length, any gene set containing long genes is not of biologically greater interest than gene sets with shorter genes. Accordingly the gene-set-level bias should be removed to accurately calculate the statistical significance of each gene-set enrichment in the RNA-seq. We present a new gene set analysis method of RNA-seq, called FDRseq, which can accurately calculate the statistical significance of a gene-set enrichment score by the grouped false-discovery rate. Numerical examples indicated that FDRseq is appropriate for controlling the transcript length bias in the gene-set analysis of RNA-seq data. To implement FDRseq, we developed the R program, which can be downloaded at no cost from http://home.mju.ac.kr/home/index.action?siteId=tyang

    SEXCMD: Development and validation of sex marker sequences for whole-exome/genome and RNA sequencing.

    No full text
    Over the last decade, a large number of nucleotide sequences have been generated by next-generation sequencing technologies and deposited to public databases. However, most of these datasets do not specify the sex of individuals sampled because researchers typically ignore or hide this information. Male and female genomes in many species have distinctive sex chromosomes, XX/XY and ZW/ZZ, and expression levels of many sex-related genes differ between the sexes. Herein, we describe how to develop sex marker sequences from syntenic regions of sex chromosomes and use them to quickly identify the sex of individuals being analyzed. Array-based technologies routinely use either known sex markers or the B-allele frequency of X or Z chromosomes to deduce the sex of an individual. The same strategy has been used with whole-exome/genome sequence data; however, all reads must be aligned onto a reference genome to determine the B-allele frequency of the X or Z chromosomes. SEXCMD is a pipeline that can extract sex marker sequences from reference sex chromosomes and rapidly identify the sex of individuals from whole-exome/genome and RNA sequencing after training with a known dataset through a simple machine learning approach. The pipeline counts total numbers of hits from sex-specific marker sequences and identifies the sex of the individuals sampled based on the fact that XX/ZZ samples do not have Y or W chromosome hits. We have successfully validated our pipeline with mammalian (Homo sapiens; XY) and avian (Gallus gallus; ZW) genomes. Typical calculation time when applying SEXCMD to human whole-exome or RNA sequencing datasets is a few minutes, and analyzing human whole-genome datasets takes about 10 minutes. Another important application of SEXCMD is as a quality control measure to avoid mixing samples before bioinformatics analysis. SEXCMD comprises simple Python and R scripts and is freely available at https://github.com/lovemun/SEXCMD

    Accuracy of sex identification by SEXCMD.

    No full text
    <p>Accuracy of sex identification by SEXCMD.</p

    Gene Expression Profile in Similar Tissues Using Transcriptome Sequencing Data of Whole-Body Horse Skeletal Muscle

    No full text
    Horses have been studied for exercise function rather than food production, unlike most livestock. Therefore, the role and characteristics of tissue landscapes are critically understudied, except for certain muscles used in exercise-related studies. In the present study, we compared RNA-Seq data from 18 Jeju horse skeletal muscles to identify differentially expressed genes (DEGs) between tissues that have similar functions and to characterize these differences. We identified DEGs between different muscles using pairwise differential expression (DE) analyses of tissue transcriptome expression data and classified the samples using the expression values of those genes. Each tissue was largely classified into two groups and their subgroups by k-means clustering, and the DEGs identified in comparison between each group were analyzed by functional/pathway level using gene set enrichment analysis and gene level, confirming the expression of significant genes. As a result of the analysis, the differences in metabolic properties like glycolysis, oxidative phosphorylation, and exercise adaptation of the groups were detected. The results demonstrated that the biochemical and anatomical features of a wide range of muscle tissues in horses could be determined through transcriptome expression analysis, and provided proof-of-concept data demonstrating that RNA-Seq analysis can be used to classify and study in-depth differences between tissues with similar properties

    Sex-specific marker sequences for humans.

    No full text
    <p>Sex-specific marker sequences for humans.</p

    Sex-specific marker sequences for chickens.

    No full text
    <p>Sex-specific marker sequences for chickens.</p

    Summary of datasets used for testing and validation.

    No full text
    <p>Summary of datasets used for testing and validation.</p

    Histogram of allele frequency (rice 1.5k dataset).

    No full text
    <p>This is an allele frequency for reference allele of entire and core samples. A and B are the rice 1.5K and wheat dataset, respectively. They have similar distribution.</p
    corecore